The intersection between HR strategy and HR technology

Is Big Data An HR Directive?

Is Big Data An HR Directive?

Mar 13, 2013

I have an argument with my wife every few years.  I tend to like cars with a bit more horsepower.  I mean, that 1 time a year when there is a really stupid driver about to crash into you, a few extra horses comes in handy when you really need to speed away.  The problem is that 99.99% of the time, that extra horsepower is a luxury you really don’t need.  You’d get from point A to point B just as safely, and probably just as fast.  Sometimes though, that engine really does matter.  (My wife wins 90% of arguments by the way)

Everyone in HRIT is talking about big data these days.  Unless I completely don’t get it, I thought this is what we’ve been working towards for years.  I mean, having ALL of our talent data, core HR, learning, recruiting, payroll, benefits, compensation, safety, etc data all in the same place and running analytics against it all was always part of the data warehouse plan.  I mean come on, what else is ETL for if not to grab data from all over the place, aggregate it into the ODS, and then figure out how to make sense of it all?  We’ve built a nice engine that caters to our needs 99.99% of the time.

I’m going to propose something:  Big data does not matter to HR.  It’s just a new naming of something that does matter.  Business intelligence and truly focused analytics is what makes us focus our actions in the right places.  BI, Big Data, I don’t care what we call it.  Just do it.  Either way, HR does not have a big data need at this point.  I’d propose that we can use Big Data technology to speed up our analytics outcomes, but that’s about all we need for the next few years.

In my simplified definition of Big Data, it comes down to two major attributes: the use of external data sources, and the lack of need to normalize data across sources.  If we look at it from this point of view, the reality would state that almost no HR department on the face of the earth is ready to take HR data and compare it with government census data, or employment data.  Let’s get really creative and take local population health statistics combined with local census to get some really interesting indicators on our own employee population health.  Right, we’re just not there yet.

Let me reverse the thinking for a moment though.  What about the other 0.01% of the time that our traditional BI tools just won’t help us out?  Going back to benefits examples, how many global organizations can really directly compare benefit costs across the entire world?  How many of those same global organizations have a great handle on every payroll code?  Much of the problem is that the data is often outsourced, and definitely not standardized.  Collecting the information is problematic in the first place, but next to impossible to standardize annual changes in the second. The beauty of Big Data is that in these cases, you’d actually be able to gather all of that data and not worry about how to translate it all into equal meanings.  The data might aggregate in a more “directional” way than you’d like, but you’d probably still have an acceptable view of what global benefits or payroll is doing.  It seems to me that this puts us quite a bit further ahead of where we are now.

Listen, I know that HR has some place in Big Data at some point in the future, but the reality is that the current use cases for Big Data are so few and far between, and that we have so many other data projects to work on that we should continue investing in the current report and analytics projects.  Big Data will come back our way in a few years.

As I said, my wife usually wins the arguments.  We end up buying a car that has 175 horses under the hood, and I end up wishing we had more once a year.  But inevitably, automakers seem to up the game every few model years and come 5 years down the road, that same car model how has 195 horses.  If I just wait long enough, those extra horses in the engine just become standard.

 

 

 

 

5 comments

  1. Brian Turk /

    If current BI solutions cater to 99.99% of companies’ HR-related needs, what percentage of organizations are actually using these available solutions effectively to address those 99.99% of scenarios?

  2. Good post as always.

    There is a great book from Nate Silver called “The Signal and the Noise – Why Some Predictions Fail and Some Don’t” that covers exactly what you’re referring to here.

    We just aren’t ready to process big data in any meaningful way yet. We *will* get there, but in the interim HR needs to get better at analyzing the data it already has.

    Thanks for sharing, and keep writing.

    Best,

    Rory

  3. Another great post. Does HR have big data? Not if you define it by size alone.

    The following are my quick thoughts on the topic:
    * External data – I think this is quite common, at least in a subset of organisations. Data markets and open government data is a huge help.
    * Employee Data not HR data. When you start analysing data such as business-system log files, machine generated data (turnstile data) together with your HR data you really start to see value. These data sources are quite large. I’m typically visualising tables with over 1 million rows.
    * Unstructured data. 70% of our work this year includes text analytics of open-text fields and documents. From an analyst perspective it’s like hitting oil and the fact it’s now easy means you can start thinking about capturing more of it (where appropriate)
    * networks and graphs (in the mathematical sense). So much of the world we’re analysing has network effects that this must surely be a big area for HR analytics.

    Finally I’d advise you to read the two articles I wrote last year: http://www.organizationview.com/big-data-and-HR-pt-i-what-is-big-data-and-why-should-you-care

  4. I like big data, however I’ll be one of the first to admit that HR often doesn’t have the specialized knowledge to actually deal with big data. Its more that simply hiring some IT types or statisticians, the HR team as a whole needs to be up-skilled. Just look at the quality (or lack thereof) done with exit interviews.

  5. Andrew: Thanks for the real world stats – much better than my anecdotal thoughts.

    Cowgirl: I agree – it’s not just one role, but our overall acceptance that analytics is a big deal and we’re not good in general producing it, understanding it, and providing it to the business.

    Thanks for the comments!

Get Adobe Flash player